CONFORMATIONAL ANALYSIS AND QSAR MODELING OF 14-MEMBERED MACROLIDE ANALOGUES AGAINST MYCOBACTERIUM TUBERCULOSIS

Authors

  • K. Zitouni Group of Computational and Pharmaceutical Chemistry, Laboratory of Molecular Chemistry and Environment, University of Biskra, BP 145 Biskra 07000, Algeria
  • S. Belaidi Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and environment, Department of Chemistry , University of Biskra
  • A. Kerassa VTRS Laboratory, Faculty of Sciences and Technology, University of El Oued, B.P.789, 39000 El Oued, Algeria

DOI:

https://doi.org/10.4314/jfas.v12i3.4

Keywords:

Macrolide, Conformational, MESP, QSAR studies , MLR

Abstract

Electronic structures, effect of the substitution and structure physical-chemistry properties relationship for macrolide derivatives, have been studied by PM3 and ab initio methods. In the present work, the calculated values, namely net charges, bond lengths, MESP, dipole moments, electron-affinities, heats of formation, then, we treated the structural, physical and chemical relationships for a series of macrolide derivatives with inhibition activity against Mycobacterium tuberculosis. QSAR studies were done for these macrolide derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of macrolide derivatives. Results validate the derived QSAR model.

Downloads

Download data is not yet available.

References

[1] Brown AC, Fraser TR. On the Connection between Chemical Constitution and Physiological Action; with special reference to the Physiological Action of the Salts of the Ammonium Bases derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia. J. .Anat. Physiol., 1868, 2(2), 224–42.
[2] Belaidi S, Omari M, Lanez T and Dibi A, Contribution a l’étude de la relation structure-activité dans des nouveaux macrolides antibiotiques, J. Soc. Alger. Chim., 2004,14, 27-39
[3] Belaidi S, Mazri R, Mellaoui M, Kerassa A and Belaidi H. Electronic structure and effect of methyl substitution in oxazole and thiazole by quantum chemical calculations. Res. J Pharm.Biol.Chem. Sci., 2014, 5(3), 811-818.
[4] Belaidi S, Dibi A, Omari M, A Conformational Exploration of Dissymmetric Macrolides Antibiotics, Turk J Chem. , 2002, 26, 491-500
[5]Sachan A K, Pathak S K, Prasad O, Belaidi S and Sinha L. Spectrochim. Acta. A. Mol. Biomol. Spectros2014,132, 568-581. doi:10.1016/j.saa.2014.05.011
[6] Esposito EX, Hopfinger AJ, Madura JD. Methods for applying the quantitative structure-activity relationship paradigm. Methods. Mol. Biol., 2004, 275, 131–214.
[7] Hanachi R, Belaidi S, Kerassa A, Boughdiri S. Structure Activity/Property Relationships of pyrazole Derivatives by MPO and QSAR Methods for Drug Design. Res. J. Pharm. Biol.Chem. Sci., 2015, 6(4), 923-935.
[8] Mazzei T, Mini E, Novelli A, and Perti P, Chemistry and mode of action of macrolides. J. Antimicrob. Chemother., 1993, 31(Suppl. C):1–9.
[9] Kanoh S, Rubin B K, Clin. Microbiol. Rev. 2010, p.590–615. doi: 10.1128/CMR.00078-09
[10] Chen MW, Muri E M F, Jacob M, Williamson J S, Synthesis and bioactivity of erythromycin derivative. Med. Chem. Res., 2003, 12(3), 111-129
[11] Douthwaite S, Structure–activity relationships of ketolides vs. macrolides Euro. Soc. Clini. Microb. Infec. Dises., 2001,7(3),11-17
[12] Belaidi S, Youcef O, Salah T and Lanez T, J. Comput. Theor. Nanos., 2015, 12 (11), 4855-4861, doi: 10.1166/jctn.2015.4451
[13] Belaidi S, Laabassi M, Grée R and Botrel A, Nouvelle approche de la stéréosélectivité dans des macrolides antibiotiques à 20 chaînons par la modélisation moléculaire, Rev. Roum. chim., 2005,50,759-765
[14] Ciobanu M, Preda L, Savastru D, Savastru R, and. Car, SteaE M, Band Gaps for Some Specific Photonic Crystals Structures., Quantum Matter, 2013, 2, 60.
[15] Anurag S, Srashti J, and Nagawat A K, Electronic Properties of Nitrogen Doped Armchair Single Wall Nanotubes: Ab-Initio Study Quantum Matter, 2013, 2, 469.
[16] Srivastava A, Saraf N, and Nagawat A K, Conductance Analysis of Zigzag Carbon Nanotubes Under Stress: Ab-Initio Study. Quantum Matter, 2013, 2, 401.
[17] Srivastava A, Jain N, and Nagawat A K, Effect of Stone-Wales Defects on Electronic Properties of CNTs: Ab-Initio Study. Quantum Matter, 2013, 2, 307.
[18] Chang C M, Tseng H L, Jalbout A F, and A. de Leon, J. Comput. Theor. Nanosci., 2013, 10, 527 .
[19] Jensen T L,Moxnes J, and Unneberg E,A Density Functional Theory Comparison Study of the Surface and Lattice Energy of Sodium Chloride. J. Comput. Theor. Nanosci., 2013, 10, 464 .
[20] Narayanan M, and Peter A J, Pressure and Temperature Induced Non-Linear Optical Properties in a Narrow Band Gap Quantum Dot. Quantum Matter, 2012, 1, 53.
[21]Cocoletzi G H and Takeuchi N, First Principles Calculations of the Structural and Electronic Properties of Zinc Sulfide Nanowires., Quantum Matter, 2013, 2, 382.
[22] Ibrahim M, and Elhaes H, Exploring materials: Molecular modeling approach., Rev. Theor. Sci. , 2013, 1, 368 .
[23]Anota E C, Cocoletzi H H, and Castro M, Structural and Electronic Properties of the Graphene-Like Carbon Nitride Nanosheets. J. Comput. Theor. Nanosci., 2013, 10, 2542.
[24]Bazooyar F, Taherzadeh M, Niklasson C, and Bolton K, Molecular Modelling of Cellulose Dissolution., J. Comput. Theor. Nanosci., 2013,10, 2639 .
[25]Langueur H, Kassali K, and Lebgaa N, Density Functional Study of Structural,Mechanic, Thermodynamic and Dynamic Properties of SiGe Alloys ., J. Comput. Theor. Nanosci., 2013, 10, 86.
[26] Martin Y C, Quantitative Drug Design, Marcel Dekker, New York, NY, USA (1978).
[27]Topliss J G, Perspect. Drug. Discov. Des., 1993,1, 253,doi.org/10.1007/BF02174527
[28]Zhigao W, Fangqiang W, Changhua S, and Yongling Z,Computer Simulation of Polymer Delivery System by Dissipative Particle Dynamics., J. Comput. Theor. Nanosci., 2013, 10, 2323 .
[29]EghdamiA, and Monajjemi M, Quantum Modeling of Alpha Interferon Subunits in Point of Nano Anticancer Drug ., Quantum Matter, 2013, 2, 324.
[30] Chen Y, Xu D, and Yang M, Quantitative Study on Longitudinal Strain of Left Ventricle in Patients with Myocardial Ischemia by Two-Dimensional Speckle Tracking Imaging., J. Comput. Theor. Nanosci., 2013, 10, 2916.
[31] Wu B, Kong X, Cao Z, Pan Y, Ren Y, Li Y, Yang Q, and Liv F, Structural Characterization and Statistical Modeling of Nanopeptide Collision Cross-Sections in Ion Mobility Spectrometry ., J. Comput. Theor. Nanosci., 2013,10, 2403.
[32]Falzari K, Zhu Z, Pan D, Liu H, HongmaneeP and Franzblau S G, Antimicrob. Agents Chemother., 2005, 49(4), 1447–1454. doi: 10.1128/AAC.49.4.1447-1454.2005
[33] Zhaohai J Z, Olga K, Dahua P, Valentina P,GengliP Y, Yinghui L, Huiwen L, SaweonH, Yuehong W, BaojieW, WenzhongL, and Scott G F, Structure-activity relationships of macrolides against Mycobacterium tuberculosis, Tuberculosis ., 2008, 1, S49-S63
[34] HyperChem (Molecular Modeling System) Hypercube, Inc. USA, (2007 ).
[35] Stewart J J P, J. Comput. Chem., 1989,10, 221-264, doi.org/10.1002/jcc.540100209
[36] SPSS software packages , SPSS Inc., 444 North Michigan Avenue, Suite 3000, Chicago, Illinoi, 60611, USA
[37] Soualmia F , Belaidi S, Tchouar N, Lanez T, Review of Computational Studies Applied in New Macrolide Antibiotics, J Fundam Appl Sci., 2020, 12(1S), 392-415
[38] Belaidi S, Lanez T, Omari M, and A. Botrel, Quantitative conformational analysis of dissymmetric macrolides by molecular modelling, Asian J. Chem., 2005, 17, 859
[39] Belaidi S, Laabassi M, Gree R, Botrel A, Analyse multiconformationnelle des macrolides symétriques de 12 à 28 chaînons basée sur la mécanique moléculaire., Scientific Study&Research., 2003,4 ,27-38.
[40] Belaidi S and Harkati D, Conformational Analysis in 18-Membered Macrolactones, Based on Molecular Modeling, ISRN Org. Chem., 2011, 201,1-5,doi.org/10.5402/2011/594242
[41] Fleming I, Frontier Orbitals and Organic Chemical Reactions (John Wiley and Sons, NewYork, 1976, 5-27.
[42] Murray J S, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications Elsevier, Amsterdam, 1996.
[43] Alkorta I, Perez J J, Int. J. Quant. Chem., 1996,57, 123. doi.org/10.1002/(SICI)1097-461X(1996)57:1<123::AID-QUA14>3.0.CO;2-9
[44]Scrocco E, Tomasi J, Adv. Quantum Chem., 1978, 11 , 115.doi.org/10.1016/S0065-3276(08)60236-1
[45]Miessler G L,Tarr D A, Inorganic. Chemistry, 2nd ed, Prentice-Hall Upper Saddle River, NJ, USA. (1999).
[46]Viswanadhan V N, Ghose A K, Revankar G R, and Robins R K, J. Chem. Inf. Comput. ,1989, 29,163 ,doi.org/10.1021/ci00063a006
[47]Ghose AK and Crippen GM, J. Chem. Inf. Comput. Sci., 1987, 27, 21, doi:10.1021/ci00053a005
[48]Bodor N, Gabanyi Z, and Wong C K, J. Am. Chem. Soc., 1989, 111, 3783 , doi.org/10.1021/ja00193a003
[49] Gavezzotti A, J. Am. Chem. Soc., 1983,105, 5220, doi.org/10.1021/ja00354a007
[50] Miller K J, J. Am. Chem. Soc., 1990,112, 8533 , doi.org/10.1021/ja00179a044
[51]Ooi T, Oobatake M, Nemethy G, and Scheraga H A, Proc. Natl.Acad. Sci. USA. 1987,84, 3086 , doi:10.1073/pnas.84.10.3086
[52] Kerns E H and Di L, Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization, Academic Press, Nez York, USA (2008), pp. 43–47.
[53]Pliska V, Testa B, H. Van de Waterbeemd, R. Mannhold, H. Kubinyi, and H. Timmerman, Lipophilicity in Drug Action andToxicology, Wiley-VCH, Weinheim, Federal Republic of Germany (1996).
[54]Yavorski B ,Detlaf A, Checklist of Physics, Editions Mir, Moscow (1980), p. 376.
[55] L. B. Kier, Molecular Orbital Theory in Drug Research, Academic Press, New York (1981).
[56] LipinskiCh A, Lombardo F, Dominy B W, and Feeney P J, Adv.Drug Deliv. Rev. , 2012,64, 4 , doi:10.1016/s0169-409x(00)00129-0
[57]Vistoli G, Pedretti A, and Testa B, Drug. Discov. Today. 13, 2008, 285, doi:10.1016/j.drudis.2007.11.007
[58]Alloui M, Belaidi S, Othmani H, Jaidane N-E, Hochlaf M, Chem. Phys. Lett., 2018,696, 1-8 , doi: 10.1016/j.molstruc.2019.04.004
[59] Davis A, Ward S E, The Handbook of Medicinal Chemistry: Principles and Practice, Royal Society of Chemistry, 2014.
[60] Keserü G M, Makara G M, Nat. Rev. Drug Discov., 2009, 8 , 203e212, doi: 10.1038/nrd2796
[61] Edwards P D, Albert J S, Sylvester M, Aharony D, Andisik D , Callaghan O, Campbell J B, Carr R A , Chessari G, Congreve M, Frederickson M , Folmer R H A, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger R C, Murray Ch W, Olsson Lise-Lotte, Patel S, Spear N, Tian G, J. Med. Chem. 2007,50 , 5912–5925, doi.org/10.1021/jm070829p
[62] Reynolds C H, Tounge B A, Bembenek S D, J. Med. Chem. , 2008,51 , 2432–2438.doi:
10.1021/jm701255b
[63]Handlon A L, SchallerL T, Leesnitzer L M, Merrihew R V, Poole C, Ulrich J C,Wilson J W, Cadilla R, Turnbull P, ACS Med. Chem. Lett., 2015,7, 83–88.doi:10.1021/acsmedchemlett.5b00377
[64] Hill RG, Drug Discovery and Development – E-Book: Technology in Transition, Elsevier Health Sciences, 2012.
[65] Lipinski C A, Lombardo F, Dominy B W, and Feeney P J, Adv. Drug. Deliv. Rev. 23, 1997, 3 , doi.org/10.1016/S0169-409X(96)00423-1
[66] Benfenati E, Quantitative Structure Activity Relationships (QSAR) for Pesticide Regulatory Purposes, Elsevier, 2011.
[67] Asirvatham S, Dhokchawle B V, Tauro S J , Arab. J. Chem. (2016), doi.org/10.1016/j.arabjc.2016.03.002.
[68] H. van de Waterbeemd, Chemometric Methods in Molecular Design, John Wiley& Sons, 2008.
[69] Srivastava A K, Shukla N, J. Saudi Chem. Soc., 2012, 16 , 405–412, doi.org/10.1016/j.jscs.2011.02.010

Downloads

Published

2020-08-01

How to Cite

ZITOUNI, K.; BELAIDI, S.; KERASSA, A. CONFORMATIONAL ANALYSIS AND QSAR MODELING OF 14-MEMBERED MACROLIDE ANALOGUES AGAINST MYCOBACTERIUM TUBERCULOSIS. Journal of Fundamental and Applied Sciences, [S. l.], v. 12, n. 3, p. 1035–1066, 2020. DOI: 10.4314/jfas.v12i3.4. Disponível em: https://mail.jfas.info/index.php/JFAS/article/view/807. Acesso em: 25 jan. 2026.

Issue

Section

Articles